THE E. COLI O157:H7 BACTERIA

Sources, Characteristics, and Identification

Escherichia coli (E. coli) is an archetypal commensal bacterial species that lives in mammalian intestines. E. coli O157:H7 is one of thousands of serotypes E. coli.[1] The combination of letters and numbers in the name of E. coli O157:H7 refers to the specific antigens (proteins which provoke an antibody response) found on the body, as well as on the tail, or flagellum,[2] and distinguish it from other types of E. coli.[3] Most serotypes of E. coli are harmless and live as normal flora in the intestines of healthy humans and animals.[4]

The E. coli bacterium is among the most extensively studied microorganisms.[5] The testing to distinguish E. coli O157:H7 from its other E. coli counterparts is called serotyping.[6] Pulsed-field gel electrophoresis (PFGE),[7] sometimes also referred to as genetic fingerprinting, is used to compare E. coli O157:H7 isolates to one another to determine if the strains are distinguishable.[8] A technique called multilocus variable number of tandem repeats analysis (MLVA) is used to determine precise classification when it is difficult to differentiate between isolates with indistinguishable or very similar PFGE patterns.[9]

The E. coli O157:H7 Bacteria

E. coli O157:H7 was first recognized as a pathogen in 1982 during an investigation into an outbreak of hemorrhagic colitis[10] associated with consumption of hamburgers from a fast food chain restaurant.[11] Retrospective examination of more than three thousand E. coli cultures obtained between 1973 and 1982 found only one (1) isolation with serotype O157:H7, and that was a case in 1975.[12] In the ten (10) years that followed there were approximately thirty (30) outbreaks recorded in the United States.[13] This number is likely misleading, however, because E. coli O157:H7 infections did not become a reportable disease in any state until 1987, when Washington became the first state to mandate its reporting to public health authorities.[14] As a result, only the most geographically concentrated outbreak would have garnered enough notice to prompt further investigation.[15]

E. coli O157:H7’s ability to induce injury in humans is a result of its ability to produce numerous virulence factors—most notably, Shiga-like toxins (SLT).[16] Shiga toxin (Stx) has multiple variants (e.g. Stx1, Stx2, Stx2c), and acts like the plant toxin ricin by inhibiting protein synthesis in endothelial and other cells.[17] Shiga toxin is one of the most potent toxins known.[18] In addition to Shiga toxins, E. coli O157:H7 produces numerous other putative virulence factors including proteins, which aid in the attachment and colonization of the bacteria in the intestinal wall and that can lyse red blood cells to liberate iron that helps support E. coli metabolism.[19]

E. coli O157:H7 evolved from enteropathogenic E. coli serotype O55:H7, a cause of non-bloody diarrhea, through the sequential acquisition of phage-encoded Stx2, a large virulence plasmid, and additional chromosomal mutations.[20] The rate of genetic mutation of E. coli O157:H7 indicates that the common ancestor of current E. coli O157:H7 clades[21] likely existed some 20,000 years ago.[22] E. coli O157:H7 is a relentlessly evolving organism[23], constantly mutating and acquiring new characteristics, including virulence factors that make the emergence of more dangerous variants a constant threat.[24] The CDC has emphasized the prospect of emerging pathogens as a significant public health threat for some time.[25]

Although foods of a bovine origin are the most common cause of both outbreaks and sporadic cases of E. coli O157:H7 infections,[26] outbreak of illnesses have been linked to a wide variety of food items. For example, produce has, since 1991, been the source of substantial numbers of outbreak-related E. coli O157:H7 infections.[27] Other unusual vehicles for E. coli O157:H7 outbreaks have included unpasteurized juices, yogurt, dried salami, mayonnaise, raw milk, game meats, sprouts, and raw cookie dough.[28]

According to a recent study, an estimated 93,094 illnesses are caused by domestically acquired E. coli O157:H7 each year in the United States.[29] It is estimated that foodborne acquired O157:H7 cases result in 2,138 hospitalizations and 20 deaths annually.[30]

The colitis caused by E. coli O157:H7 is characterized by severe abdominal cramps, diarrhea that typically turns bloody within twenty-four hours, and sometimes fevers.[31] The incubation period—which is to say the time from exposure to the onset of symptoms—in outbreaks is usually reported as three to four days, but may be as short as one day or as long as ten days.[32] Infection can occur in people of all ages but is most common in children.[33] The duration of an uncomplicated illness can range from one to twelve days.[34] Although the rate of death is 0-2 percent in reported outbreaks, in outbreaks that involve the elderly, like those that have occurred in nursing homes, the rate of death can run as high as 16-35%.[35]

What makes E. coli O157:H7 remarkably dangerous is its very low infectious dose,[36] and how relatively difficult it is to kill the bacteria.[37] Unlike Salmonella, for example, which usually requires something approximating an “egregious food handling error, E. coli O157:H7 in ground beef that is only slightly undercooked can result in infection,”[38] as few as twenty organisms may be sufficient to infect a person and, as a result, possibly kill them.[39] And unlike generic E. coli, the O157:H7 serotype multiplies at temperatures up to 44°F, survives freezing and thawing, is heat resistant, grows at temperatures up to 111°F, resists drying, and can survive exposure to acidic environments.[40]

And, finally, to make it even more of a threat, E. coli O157:H7 bacteria are easily transmitted by person-to-person contact.[41] There is also the serious risk of cross-contamination between raw meat and other food items intended to be eaten without cooking. Indeed, a principle and consistent criticism of the USDA E. coli O157:H7 policy is the fact that it has failed to focus on the risks of cross-contamination versus that posed by so-called improper cooking.[42] With this pathogen, there is ultimately no margin of error. It is for this precise reason that the USDA has repeatedly rejected calls from the meat industry to hold consumers primarily responsible for E. coli O157:H7 infections caused, in part, by mistakes in food handling or cooking.[43]

Hemolytic Uremic Syndrome (HUS)

E. coli O157:H7 infections can lead to a severe, life-threatening complication called hemolytic uremic syndrome (“HUS”).[44] HUS accounts for the majority of the acute and chronic illness and death caused by E coli bacteria.[45] HUS occurs in 2-7% of victims who are primarily children, with onset occurring five to ten days after diarrhea begins.[46] HUS is the most common cause of renal failure in children.[47] Approximately half of the children who suffer HUS require dialysis, and at least 5% of those who survive have long-term renal impairment.[48] The same number suffers severe brain damage.[49] While somewhat rare, serious injury to the pancreas, resulting in death or the development of diabetes, can also occur.[50] There is no cure or effective treatment for HUS.[51] And, tragically, as too many parents can attest, children with HUS too often die.[52]

HUS is believed to develop when SLT from the bacteria enters circulation in the body through the inflamed bowel wall.[53] SLT, and most likely other chemical mediators, attach to receptors on the inside surface of blood vessel cells (endothelial cells) and initiate a chemical cascade that results in the formation of tiny thrombi (blood clots) within these vessels.[54] Some organs seem more susceptible, perhaps due to the presence of increased numbers of receptors, and include the kidney, pancreas, and brain.[55] By definition, when fully expressed, HUS presents with the triad of hemolytic anemia (destruction of red blood cells), thrombocytopenia (low platelet count), and renal failure (loss of kidney function).[56]

As already noted, there is no known therapy to halt the progression of HUS. HUS is a frightening complication that even in the best American medical centers has a notable mortality rate.[57] Among survivors, at least five percent will suffer end stage renal disease (ESRD) with the resultant need for dialysis or transplantation.[58] But “[b]ecause renal failure can progress slowly over decades, the eventual incidence of ESRD cannot yet be determined.”[59] Other long-term problems include the risk for hypertension, proteinuria (abnormal amounts of protein in the urine that can portend a decline in renal function), and reduced kidney filtration rate.[60] Since the longest available follow-up studies of HUS victims are twenty-five years, an accurate lifetime prognosis is not really available and remains controversial.[61] All that can be said for certain is that HUS causes permanent injury, including loss of kidney function, and it requires a lifetime of close medical monitoring.

Irritable Bowel Syndrome

A recently-published study surveyed the extant scientific literature and noted that post-infectious irritable bowel syndrome (PI-IBS) is a common clinical phenomenon first-described over five decades ago.[62] The Walkerton Health Study further notes that:

Between 5% and 30% of patients who suffer an acute episode of infectious gastroenteritis develop chronic gastrointestinal symptoms despite clearance of the inciting pathogens.[63]

In terms of its own data, the “study confirm[ed] a strong and significant relationship between acute enteric infection and subsequent IBS symptoms.”[64] The WHS also identified risk-factors for subsequent IBS, including: younger age; female sex; and four features of the acute enteric illness—diarrhea for > 7days, presence of blood in stools, abdominal cramps, and weight loss of at least ten pounds.[65]

Irritable bowel syndrome (IBS) is a chronic disorder characterized by alternating bouts of constipation and diarrhea, both of which are generally accompanied by abdominal cramping and pain.[66] In one recent study, over one-third of IBS sufferers had had IBS for more than ten years, with their symptoms remaining fairly constant over time.[67] IBS sufferers typically experienced symptoms for an average of 8.1 days per month.[68]

As would be expected from a chronic disorder with symptoms of such persistence, IBS sufferers required more time off work, spent more days in bed, and more often cut down on usual activities, when compared with non-IBS sufferers.[69] And even when able to work, a significant majority (67%), felt less productive at work because of their symptoms.[70] IBS symptoms also have a significantly deleterious impact on social well-being and daily social activities, such as undertaking a long drive, going to a restaurant, or taking a vacation.[71] Finally, although a patient’s psychological state may influence the way in which he or she copes with illness and responds to treatment, there is no evidence that supports the theory that psychological disturbances in fact cause IBS or its symptoms.[72]

[1]           E. coli bacteria were discovered in the human colon in 1885 by German bacteriologist Theodor Escherich.  Feng, Peter, Stephen D. Weagant, Michael A. Grant, Enumeration of Escherichia coli and the Coliform Bacteria, in BACTERIOLOGICAL ANALYTICAL MANUAL (8th Ed. 2002), http://www.cfsan.fda.gov/~ebam/bam-4.html. Dr. Escherich also showed that certain strains of the bacteria were responsible for infant diarrhea and gastroenteritis, an important public health discovery. Id. Although the bacteria were initially called Bacterium coli, the name was later changed to Escherichia coli to honor its discoverer. Id.

[2]           Not all E. coli are motile. For example, E. coli O157:H7 which lack flagella are thus E. coli O157:NM for non-motile.

[3]           CDC, Escherichia coli O157:H7, General Information, Frequently Asked Questions: What is Escherichia coli O157:H7?, http://www.cdc.gov/ncidod/dbmd/diseaseinfo/escherichiacoli_g.htm.

[4]           Marion Nestle, Safe Food:  Bacteria, Biotechnology, and Bioterrorism, 40-41 (1st Pub. Ed. 2004).

[5]           James M. Jay, MODERN FOOD MICROBIOLOGY at 21 (6th ed. 2000). (“This is clearly the most widely studied genus of all bacteria.”)

[6]           Beth B. Bell, MD, MPH, et al. A Multistate Outbreak of Escherichia coli O157:H7-Associated Bloody Diarrhea and Hemolytic Uremic Syndrome from Hamburgers:  The Washington Experience, 272 JAMA (No. 17) 1349, 1350 (Nov. 2, 1994) (describing the multiple step testing process used to confirm, during a 1993 outbreak, that the implicated bacteria were E. coli O157:H7).

[7]           Jay, supra note 5, at 220-21 (describing in brief the PFGE testing process).

[8]           Id.  Through PFGE testing, isolates obtained from the stool cultures of probable outbreak cases can be compared to the genetic fingerprint of the outbreak strain, confirming that the person was in fact part of the outbreak. Bell, supra note 6, at 1351-52. Because PFGE testing soon proved to be such a powerful outbreak investigation tool, PulseNet, a national database of PFGE test results was created.  Bala Swaminathan, et al.  PulseNet:  The Molecular Subtyping Network for Foodborne Bacterial Disease Surveillance, United States, 7 Emerging Infect. Dis. (No. 3) 382, 382-89 (May-June 2001) (recounting the history of PulseNet and its effectiveness in outbreak investigation).

[9]           Konno T. et al.  Application of a multilocus variable number of tandem repeats analysis to regional outbreak surveillance of Enterohemorrhagic Escherichia coli O157:H7 infections. Jpn J Infect Dis. 2011 Jan; 64(1): 63-5.

[10]          “[A] type of gastroenteritis in which certain strains of the bacterium Escherichia coli (E. coli) infect the large intestine and produce a toxin that causes bloody diarrhea and other serious complications.”  The Merck Manual of Medical Information, 2nd Home Ed. Online, http://www.merck.com/mmhe/sec09/ch122/ch122b.html.

[11]          L. Riley, et al.  Hemorrhagic Colitis Associated with a Rare Escherichia coli Serotype, 308 New. Eng. J. Med. 681, 684-85 (1983) (describing investigation of two outbreaks affecting at least 47 people in Oregon and Michigan both linked to apparently undercooked ground beef).  Chinyu Su, MD & Lawrence J. Brandt, MD, Escherichia coli O157:H7 Infection in Humans, 123 Annals Intern.  Med. (Issue 9), 698-707 (describing the epidemiology of the bacteria, including an account of its initial discovery).

[12]          Riley, supra note 11 at 684. See also Patricia M. Griffin & Robert V. Tauxe, The Epidemiology of Infections Caused by Escherichia coli O157:H7, Other Enterohemorrhagic E. coli, and the Associated Hemolytic Uremic Syndrome, 13 Epidemiologic Reviews 60, 73 (1991).

[13]          Peter Feng, Escherichia coli Serotype O157:H7:  Novel Vehicles of Infection and Emergence of Phenotypic Variants, 1 Emerging Infect. Dis. (No. 2), 47, 47 (April-June 1995) (noting that, despite these earlier outbreaks, the bacteria did not receive any considerable attention until ten years later when an outbreak occurred 1993 that involved four deaths and over 700 persons infected).

[14]          William E. Keene, et al.  A Swimming-Associated Outbreak of Hemorrhagic Colitis Caused by Escherichia coli O157:H7 and Shigella Sonnei, 331 New Eng. J. Med. 579 (Sept. 1, 1994).  See also Stephen M. Ostroff, MD, John M. Kobayashi, MD, MPH, and Jay H. Lewis, Infections with Escherichia coli O157:H7 in Washington State:  The First Year of Statewide Disease Surveillance, 262 JAMA (No. 3) 355, 355 (July 21, 1989).  (“It was anticipated the reporting requirement would stimulate practitioners and laboratories to screen for the organism.”)

[15]          See Keene, supra note 14 at 583. (“With cases scattered over four counties, the outbreak would probably have gone unnoticed had the cases not been routinely reported to public health agencies and investigated by them.”)  With improved surveillance, mandatory reporting in 48 states, and the broad recognition by public health officials that E. coli O157:H7 was an important and threatening pathogen, there were a total of 350 reported outbreaks from 1982-2002. Josef M. Rangel, et al.  Epidemiology of Escherichia coli O157:H7 Outbreaks, United States, 1982-2002, 11 Emerging Infect. Dis. (No. 4) 603, 604 (April 2005).

[16]          Griffin & Tauxe supra note 12, at 61-62 (noting that the nomenclature came about because of the resemblance to toxins produced by Shigella dysenteries).

[17]          Sanding K, Pathways followed by ricin and Shiga toxin into cells, Histochemistry and Cell Biology, vol. 117, no. 2:131-141 (2002). Endothelial cells line the interior surface of blood vessels.  They are known to be extremely sensitive to E. coli O157:H7, which is cytotoxigenic to these cells making them a primary target during STEC infections.

[18]          Johannes L, Shiga toxins—from cell biology to biomedical applications.  Nat Rev Microbiol 8, 105-116 (February 2010).  Suh JK, et al.  Shiga Toxin Attacks Bacterial Ribosomes as Effectively as Eucaryotic Ribosomes, Biochemistry, 37 (26); 9394–9398 (1998).

[19]          Welinder-Olsson C, Kaijser B.  Enterohemorrhagic Escherichia coli (EHEC).  Scand J. Infect Dis. 37(6-7): 405-16 (2005).  See also USDA Food Safety Research Information Office E. coli O157:H7 Technical Fact Sheet:  Role of 60-Megadalton Plasmid (p0157) and Potential Virulence Factors, http://fsrio.nal.usda.gov/document_fsheet.php?product_id=225.

[20]          Kaper JB and Karmali MA.  The Continuing Evolution of a Bacterial Pathogen.  PNAS vol. 105 no. 12 4535-4536 (March 2008).  Wick LM, et al.  Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7.  J Bacteriol 187:1783–1791(2005).

[21]          A group of biological taxa (as species) that includes all descendants of one common ancestor.

[22]          Zhang W, et al.  Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Res 16:757–767 (2006).

[23]          Robins-Browne RM. The relentless evolution of pathogenic Escherichia coli.  Clin Infec Dis. 41:793–794 (2005).

[24]          Manning SD, et al. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. PNAS vol. 105 no. 12 4868-4873 (2008).  (“These results support the hypothesis that the clade 8 lineage has recently acquired novel factors that contribute to enhanced virulence.  Evolutionary changes in the clade 8 subpopulation could explain its emergence in several recent foodborne outbreaks; however, it is not clear why this virulent subpopulation is increasing in prevalence.”)

[25]          Robert A. Tauxe, Emerging Foodborne Diseases: An Evolving Public Health Challenge, 3 Emerging Infect. Dis. (No. 4) 425, 427 (Oct.-Dec. 1997).  (“After 15 years of research, we know a great deal about infections with E. coli O157:H7, but we still do not know how best to treat the infection, nor how the cattle (the principal source of infection for humans) themselves become infected.”)

[26]          CDC, Multistate Outbreak of Escherichia coli O157:H7 Infections Associated with Eating Ground Beef—United States, June-July 2002, 51 MMWR 637, 638 (2002) reprinted in 288 JAMA (No. 6) 690 (Aug. 14, 2002).

[27]          Rangel, supra note 15, at 605.

[28]          Feng, supra note 13, at 49. See also USDA Bad Bug Book, Escherichia coli O157:H7, http://www.fda.gov/food/foodsafety/foodborneillness/foodborneillnessfoodbornepathogensnaturaltoxins/badbugbook/ucm071284.htm.

[29]          Scallan E, et al.  Foodborne illness acquired in the United States –major pathogens, Emerging Infect. Dis. Jan. (2011), http://www.cdc.gov/EID/content/17/1/7.htm.

[30]          Id., Table 3.

[31]          Griffin & Tauxe supra note 12, at 63.

[32]          Centers for Disease Control, Division of Foodborne, Bacterial and Mycotic Diseases, Escherichia coli general information, http://www.cdc.gov/nczved/dfbmd/disease_listing/stec_gi.htmlSee also PROCEDURES TO INVESTIGATE FOODBORNE ILLNESS, 107 (IAFP 5th Ed. 1999) (identifying incubation period for E. coli O157:H7 as “1 to 10 days, typically 2 to 5”).

[33]          Su & Brandt, supra note 11 (“the young are most often affected”).

[34]          Tauxe, supra note 25, at 1152.

[35]          Id.

[36]          Griffin & Tauxe supra note 12, at 72. (“The general patterns of transmission in these outbreaks suggest that the infectious dose is low.”)

[37]          V.K. Juneja, O.P. Snyder, A.C. Williams, and B.S. Marmer, Thermal Destruction of Escherichia coli O157:H7 in Hamburger, 60 J. Food Prot. (vol. 10). 1163-1166 (1997) (demonstrating that, if hamburger does not get to 130°F, there is no bacterial destruction, and at 140°F, there is only a 2-log reduction of E. coli present).

[38]          Griffin & Tauxe supra note 12, at 72 (noting that, as a result, “fewer bacteria are needed to cause illness that for outbreaks of salmonellosis”). Nestle, supra note 4, at 41. (“Foods containing E. coli O17:H7 must be at temperatures high enough to kill all of them.”) (italics in original)

[39]          Patricia M. Griffin, et al.  Large Outbreak of Escherichia coli O157:H7 Infections in the Western United States:  The Big Picture, in RECENT ADVANCES IN VEROCYTOTOXIN-PRODUCING ESCHERICHIA COLI INFECTIONS, at 7 (M.A. Karmali & A. G. Goglio eds. 1994).  (“The most probable number of E. coli O157:H7 was less than 20 organisms per gram.”)  There is some inconsistency with regard to the reported infectious dose.  Compare Chryssa V. Deliganis, Death by Apple Juice:  The Problem of Foodborne Illness, the Regulatory Response, and Further Suggestions for Reform, 53 Food Drug L.J. 681, 683 (1998) (“as few as ten”) with Nestle, supra note 4, at 41 (“less than 50”). Regardless of these inconsistencies, everyone agrees that the infectious dose is, as Dr. Nestle has put it, “a miniscule number in bacterial terms.”  Id.

[40]          Nestle, supra note 4, at 41.

[41]          Griffin & Tauxe supra note 12, at 72. The apparent “ease of person-to-person transmission…is reminiscent of Shigella, an organism that can be transmitted by exposure to extremely few organisms.”  Id.  As a result, outbreaks in places like daycare centers have proven relatively common.  Rangel, supra note 15, at 605-06 (finding that 80% of the 50 reported person-to-person outbreak from 1982-2002 occurred in daycare centers).

[42]          See, e.g. National Academy of Science, Escherichia coli O157:H7 in Ground Beef: Review of a Draft Risk Assessment, Executive Summary, at 7 (noting that the lack of data concerning the impact of cross-contamination of E. coli O157:H7 during food preparation was a flaw in the Agency’s risk-assessment), http://www.nap.edu/books/0309086272/html/.

[43]          Kriefall v. Excel, 265 Wis.2d 476, 506, 665 N.W.2d 417, 433 (2003).  (“Given the realities of what it saw as consumers’ food-handling patterns, the [USDA] bored in on the only effective way to reduce or eliminate food-borne illness”—i.e., making sure that “the pathogen had not been present on the raw product in the first place.”)  (Citing Pathogen Reduction, 61 Fed. Reg. at 38966).

[44]          Griffin & Tauxe, supra note 10, at 65-68. See also Josefa M. Rangel, et al., Epidemiology of Escherichia coli O157:H7 Outbreaks, United States, 1982-2002, 11 Emerging Infect. Dis. (No. 4) 603 (April 2005) (noting that HUS is characterized by the diagnostic triad of hemolytic anemia—destruction of red blood cells, thrombocytopenia—low platelet count, and renal injury—destruction of nephrons often leading to kidney failure); Richard L. Siegler, MD, The Hemolytic Uremic Syndrome, 42 Ped. Nephrology, 1505 (Dec. 1995) (noting that the diagnostic triad of hemolytic anemia, thrombocytopenia, and acute renal failure was first described in 1955).

[45]          Siegler, supra note 35 at 1505. (“[HUS] is now recognized as the most frequent cause of acute renal failure in infants and young children.”) See also Beth P. Bell, MD, MPH, et al., Predictors of Hemolytic Uremic Syndrome in Children During a Large Outbreak of Escherichia coli O157:H7 Infections, 100 Pediatrics 1, 1 (July 1, 1997), at http://www.pediatrics.org/cgi/content/full/100/1/e12.

[46]          Tauxe, supra note 17, at 1152. See also Nasia Safdar, MD, et al., Risk of Hemolytic Uremic Syndrome After Treatment of Escherichia coli O157:H7 Enteritis: A Meta-analysis, 288 JAMA (No. 8) 996, 996 (Aug. 28, 2002).  (“E. coli serotype O157:H7 infection has been recognized as the most common cause of HUS in the United States, with 6% of patients developing HUS within 2 to 14 days of onset of diarrhea.”); Amit X. Garg, MD, MA, et al., Long-term Renal Prognosis of Diarrhea-Associated Hemolytic Uremic Syndrome: A Systematic Review, Meta-Analysis, and Meta-regression, 290 JAMA (No. 10) 1360, 1360 (Sept. 10, 2003). (“Ninety percent of childhood cases of HUS are…due to Shiga-toxin producing Escherichia coli.”)

[47]          Su & Brandt, supra note 9.

[48]          Safdar, supra note 37, at 996 (going on to conclude that administration of antibiotics to children with E. coli O157:H7 appeared to put them at higher risk for developing HUS).

[49]          Richard L. Siegler, MD, Postdiarrheal Shiga Toxin-Mediated Hemolytic Uremic Syndrome, 290 JAMA (No. 10) 1379, 1379 (Sept. 10, 2003).

[50]          Pierre Robitaille, et al., Pancreatic Injury in the Hemolytic Uremic Syndrome, 11 Pediatric Nephrology 631, 632 (1997) (“although mild pancreas involvement in the acute phase of HUS can be frequent”).

[51]          Safdar, supra note 37, at 996; see also Siegler, supra note 35, at 1379. (“There are no treatments of proven value, and care during the acute phase of the illness, which is merely supportive, has not changed substantially during the past 30 years.”)

[52]          Su & Brandt, supra note 9 (“the mortality rate is 5-10%”). See also Kriefall, 265 N.W.2d at 483 (“three-year old Brianna Kriefall died from food that everyone party to this appeal…recognize was cross-contaminated by E. coli O157:H7 bacteria from meat sold by Excel.”)

[53]          Garg, supra note 46 at 1360.

[54]          Id. Siegler, supra note, at 1509-11 (describing what Dr. Siegler refers to as the “pathogenic cascade” that results in the progression from colitis to HUS).

[55]          Garg, supra note 46 at 1360. See also Su & Brandt, supra note 11, at 700.

[56]          Garg, supra note 46 at 1360. See also Su & Brandt, supra note 11, at 700.

[57]          Siegler, supra note, at 1519 (noting that in a “20-year Utah-based population study, 5% dies, and an equal number of survivors were left with end-stage renal disease (ESRD) or chronic brain damage.”)

[58]          Garg, supra note 46 at 1366-67.

[59]          Siegler, supra note, at 1519.

[60]          Id. at 1519-20. See also Garg, supra at 1366-67.

[61]          Garg, supra note 46 at 1368.

[62]          J. Marshall, et al., Incidence and Epidemiology of Irritable Bowel Syndrome After a Large Waterborne Outbreak of Bacterial Dysentery, Gastro., 2006; 131;445-50 (hereinafter “Walkerton Health Study” or “WHS”). The WHS followed one of the largest E. coli O157:H7 outbreaks in the history of North America. Contaminated drinking water caused over 2,300 people to be infected with E. coli O157:H7, resulting in 27 recognized cases of HUS, and 7 deaths. Id. at 445.  The WHS followed 2,069 eligible study participants. Id.  For Salmonella specific references, see Smith, J.L., Bayles, D.O., Post-Infectious Irritable Bowel Syndrome: A Long Term Consequence of Bacterial Gastroenteritis, Journal of Food Protection. 2007:70(7);1762-1769.

[63]          Id. at 445 (citing multiple sources).

[64]          WHS, supra note 34, at 449.

[65]          Id. at 447.

[66]          A.P.S. Hungin, et al., Irritable Bowel Syndrome in the United States: Prevalence, Symptom Patterns and Impact, Aliment Pharmacol. Ther. 2005:21 (11); 1365-75.

[67]          Id.at 1367.

[68]          Id.

[69]          Id. at 1368.

[70]          Id.

[71]          Id.

[72]          Amy Foxx-Orenstein, DO, FACG, FACP, IBS—Review and What’s New, General Medicine 2006:8(3) (Medscape 2006) (collecting and citing studies). Indeed, PI-IBS has been found to be characterized by more diarrhea but less psychiatric illness with regard to its pathogenesis. See Nicholas J. Talley, MD, PhD, Irritable Bowel Syndrome: From Epidemiology to Treatment, from American College of Gastroenterology 68th Annual Scientific Meeting and Postgraduate Course (Medscape 2003).

The Public Health Agency of Canada is collaborating with federal and provincial public health partners to investigate an outbreak of Escherichia coli, called E. coli O121 that has now been linked to Robin Hood All Purpose Flour, Original. The Canadian Food Inspection Agency (CFIA) has issued a food recall warning advising Canadians of the recalled product that has been distributed in British Columbia, Alberta, Saskatchewan, and Manitoba. The investigation is ongoing and it is possible that additional products linked to the outbreak investigation may be identified.

Canadians are advised not to use or eat any Robin Hood All Purpose Flour, Original sold in 10 kilogram bags with a code containing BB/MA 2018 AL 17 and 6 291 548 as these products may be contaminated with E. coli. For additional recall details, please consult CFIA’s recall notice. Restaurants and retailers are also advised not to sell or serve the recalled product, or any items that may have been prepared or produced using the recalled product.

This outbreak is a reminder that it is not safe to taste or eat raw dough or batter, regardless of the type of flour used as raw flour can be contaminated with harmful bacteria such as E. coli.

There have been 25 cases of E. coli O121 with a matching genetic fingerprint reported in four provinces: British Columbia (12), Saskatchewan (4), Alberta (4) and Newfoundland and Labrador (5). The illness onset dates range from November 2016 to late February 2017. Six individuals have been hospitalized. These individuals have recovered or are recovering. No deaths have been reported. The majority (54%) of the individuals who became ill are male with an average age of 24 years.

The Canadian Food Inspection Agency has issued a food recall warning for Robin Hood All Purpose Flour, Original linked to this outbreak. During the food safety investigation, samples of Robin Hood flour were collected and did test positive for E. coli O121. Several individuals who became ill reported having contact with Robin Hood flour. The investigation is ongoing and it is possible that additional products linked to the outbreak investigation may be identified.

The Chicago Department of Public Health (CDPH) continues to work with the owners and staff of Carbón Live Fire Mexican Grill at 300 W. 26th Street as part of our ongoing investigation into an outbreak of Shiga toxin-producing E. coli (STEC). To date, 50 residents have been identified as contracting STEC related to this outbreak. This location remains closed as does a second Carbón location at 810 Marshfield. CDPH continues to recommend that anyone who has eaten at Carbón and is suffering from symptoms to see a medical provider. Individuals may also contact CDPH directly at outbreak@cityofchicago.org.

Washington Beef, LLC, a Toppenish, Wash., establishment, is recalling 1,620 pounds of boneless  beef trim product that may be contaminated with  E. coli O157:H7, the U.S. Department of Agriculture’s Food Safety and Inspection Service (FSIS) announced today.

The following boneless beef product produced on Nov. 28, 2012, is subject to recall:

60 lb. bulk packs of “TRIM 65/35 (FZN)”

The product subject to recall bears the establishment number “EST. 235” inside the USDA mark of inspection.

The problem was discovered during an internal records audit by the company, which notified FSIS. Product was shipped for further processing to a single grinding facility, then on for use in hotels, restaurants and institutions in Oregon and Washington.

E. coli O157:H7 is a potentially deadly bacterium that can cause dehydration, bloody diarrhea and abdominal cramps 2–8 days (3–4 days, on average) after exposure the organism. While most people recover within a week, some develop a type of kidney failure called hemolytic uremic syndrome (HUS). This condition can occur among persons of any age but is most common in children under 5-years old and older adults. It is marked by easy bruising, pallor, and decreased urine output. Persons who experience these symptoms should seek emergency medical care immediately.

Minnesota State health officials have identified green whole head cabbage as the likely source of an E. coli O111 outbreak that sickened 15 people in Minnesota in July.  The cabbage was likely contaminated at some point prior to distribution to restaurants.

Routine monitoring by the Minnesota Department of Health (MDH) identified the 15 cases of illness associated with Shiga toxin-producing E. coli O111. Bacterial isolates from all of the cases had the same DNA fingerprint. This genetic strain of E. coli O111 had not been seen in the United States previously.

MDH investigators were able to interview 14 of the cases: 13 of them ate at 9 different Applebee’s restaurants in Minnesota, and one ate at Yard House.

Many cases had reported eating the Oriental Chicken Salad at Applebee’s, leading Applebee’s to voluntarily and out of an abundance of caution pull the menu item and specific ingredients from the salad from their menu for a time. It was returned to the menu after Applebee’s obtained different sources for the ingredients.

The common food item across all foods consumed by cases was green whole head cabbage.

Minnesota officials traced the cabbage to a common supplier outside of Minnesota and continue to work with the United States Food and Drug Administration (FDA) to investigate its source. The FDA examination of the potentially involved farms is still ongoing.

Single cases of illness that match the outbreak strain have occurred in three other states.

The illnesses occurred between June 25 and July 3. Four of the people who became ill were hospitalized and all have recovered. No new cases connected with this outbreak have been identified in Minnesota since July 10.

Melanie Dunstan became the third California resident to file a lawsuit against Glass Onion Catering this week.  The lawsuit alleges that the plaintiff fell ill with an E. coli O157:H7 infection after eating a salad made by Glass Onion Catering and sold by Trader Joe’s in early November of 2013.  Ms. Dunstan is represented by Seattle-based Marler Clark and San Diego-based Gordon & Holmes.  This is the third lawsuit filed against Glass Onion Catering by the two firms.

In a complaint filed in Santa Cruz County Superior Court (Case No. CV178260), Ms. Dunstan alleges that she purchased and consumed a Glass Onion catering salad from a Trader Joe’s retail outlet on November 4, 2013.  Court documents state that she fell ill with symptoms of E. coli infection, including bloody diarrhea, on November 7 and sought medical treatment on November 11.  The plaintiff alleges that she later learned she had tested positive for E. coli and that she continues to suffer from the symptoms of her E. coli infection.

“Through this case, we intend to show that the salad my client purchased was contaminated with a harmful pathogen,” said attorney Bill Marler, managing partner of Marler Clark.

Glass Onion Catering voluntarily recalled numerous ready-to-eat salads and sandwich wrap products for potential E. coli contamination [1] after public health officials had identified the products as the source of an E. coli outbreak among residents of several states, including California.[2]

“E. coli infections are not pretty,” Marler continued.  “Most people who have had one say they wouldn’t wish one on their worst enemy.”

1. See, “California Firm Recalls Grilled Chicken Salad Products Due To Possible E. coli O157:H7 Contamination.”  United States Department of Agriculture.  November 10, 2013.
And “Atherstone Foods Voluntarily Recalls Salads and Wraps Because of Possible Health Risk.”  U.S. Food and Drug Administration.  November 9, 2013.

2. See, “Multistate Outbreak of Shiga toxin-producing Escherichia coli O157:H7 Infections Linked to Ready-to-Eat Salads”.  Centers for Disease Control and Prevention.  November 21, 2013.

FSIS was notified of an investigation of E. coli O157:H7 illnesses by the Wisconsin Division of Public Health on Jan. 10, 2013. Working in conjunction with the Wisconsin Division of Public Health, three case-patients with the outbreak strain have been identified in the state with illness onset dates ranging from Dec. 29, 2012 to Jan. 1, 2013. Among the three case-patients with available information, all three reported consuming raw ground round; two consumed product ground and purchased on Dec. 24, 2012; the third consumed product ground and purchased on Dec. 30, 2012 prior to illness onset. FSIS is continuing to work with the Watertown Department of Public Health, the Wisconsin Division of Public Health, the Wisconsin Department of Agriculture, Trade and Consumer Protection and the U.S. Centers for Disease Control and Prevention on this investigation.

Glenn’s Market and Catering, a Watertown, WI establishment, is recalling approximately 2,532 pounds of raw ground beef products that may be contaminated with E. coli O157:H7, the U.S. Department of Agriculture’s Food Safety and Inspection Service (FSIS) announced today.

The following products are subject to recall:

• Various size packages of Glenn’s Market ground round, ground chuck and ground beef sold between Dec. 22, 2012 and Jan. 4, 2013.

The Division of Public Health of the N.C. Department of Health and Human Services in collaboration with Local Health Departments is investigating an outbreak of E. coli infection in 106 people who attended the Cleveland County Fair. Preliminary findings suggest animal exposure may be the source of this outbreak.

As of 2 p.m., 64 children* and 42 adults are known to be/have been affected by this outbreak. Twelve individuals* have been or are currently hospitalized. The county case counts are as follows: Cleveland County – 61, Gaston County – 18*, Lincoln County – 14, Catawba County – 1, Mecklenburg – 1, Union County – 3, Rutherford – 4, York County, South Carolina – 2, Cherokee County, South Carolina – 2 *this number includes one death related to the outbreak

KMOV’s Maggie Crane reports that a 23-year-old is dead after she got E. coli, possibly after eating at a local restaurant. Her family is now asking for an investigation into the restaurant.

Ciera Brookfield told her family that she felt sick after eating at a Chinese restaurant in Overland.

Ciera was just 23 when she passed away on Thursday. Her family says the Ladue Horton Watkins High School grad got sick after eating at Hon’s Wok, which is next door to where she worked at Woofie’s on Woodson Road.


Bad Bug Book – Foodborne Pathogenic Microorganisms and Natural Toxins – Second Edition

e_colio157(1).jpg1.         Organism

Like generic E. coli, toxin-producing Shiga- toxigenic Escherichia coli (STEC) are Gram- negative, rod-shaped bacteria, but are characterized by the production of Shiga toxins (Stx). Depending on the reference cited, there are 200 to 400 STEC serotypes, many of which have not been implicated in human illness; however, a subset of STEC called enterohemorrhagic Escherichia coli (EHEC), the topic of this chapter, includes only those that cause serious illness. Serotype O157:H7 is the prototypic EHEC strain.

Although O157:H7 is currently the predominant
strain and accounts for ~75% of the EHEC
infections worldwide, other non-O157 EHEC
serotypes are emerging as a cause of foodborne
illnesses. In the United States a group often
referred to as the “big 6” (O111, O26, O121,
O103, O145, and O45) accounts for the
majority of the non-O157:H7 serotypes isolated
from clinical infections and, therefore, is
currently a focus of concern. However, other
EHEC serotypes, such as O113, O91, and others, also can cause severe illness. As a result, the non-O157 EHEC serotypes of public health concern can change quickly, depending on outbreak incidents, and can vary with countries and geographic regions.

A recent example is the large outbreak, in 2011, that was centered in Germany, but also affected various other countries in the European Union. The pathogen was identified as an E. coli strain of serotype O104:H4 that produced Shiga toxin and, therefore, was thought to be an EHEC. However, genetic analysis showed that this pathogen had 93% genetic homology with a strain of Enteroaggregative E. coli (EAEC), which is known for causing persistent diarrhea in under- developed countries, but has seldom been implicated in major foodborne incidents. Hence, the O104:H4 strain that caused the outbreak appears to be an EAEC strain that acquired the ability to produce Shiga toxin.

Currently, it is difficult to determine which serotypes of E. coli are EHEC and equally challenging to predict the emergence of strains that can acquire the genes for Shiga toxin production or other virulence factors and so cause human illness. EHEC are characterized by:

  • production of Stx, including Stx1 and/or Stx2. Stx1 is nearly identical to the toxin produced by Shigella dysenteriae Type I. There are many subtypes of both toxins, and some subtypes of Stx2 appear to be implicated in human illness. Stx2 is most often associated with severe sequelae, such as hemolytic uremic syndrome (HUS), which is characterized by acute renal failure.
  • presence of LEE (“locus for enterocyte effacement”; pathogenicity island that encodes for intimin, a protein that enables bacterial attachment to epithelial cells).

There are also several other putative virulence factors, including enterohemolysin, but the role of these factors in pathogenesis remains undetermined.

2.         Disease

  • Mortality: Patients whose illness progresses to HUS have a mortality rate of 3% to 5%.
  • Infective dose: The infective dose of EHEC O157:H7 is estimated to be very low, in the range of 10 to 100 cells. The infective dose of other EHEC serotypes is suspected to be slightly higher.
  • Onset: Symptoms usually begin 3 to 4 days after exposure, but the time may range from 1 to 9 days.
  • Disease / complications: Infections from EHEC may range from asymptomatic-to-mild diarrhea to severe complications. The acute symptoms are called hemorrhagic colitis (HC), characterized by severe abdominal cramps and bloody diarrhea, which may progress to such life-threatening complications as HUS or thrombotic thrombocytopenia purpura (TTP) – conditions that are most often associated with O157:H7, but that also can occur with other EHEC serotypes. About 3% to 7% of HC cases progress to HUS or TTP. 
Some evidence suggests that Stx2 and intimin are associated with progression to severe disease, such as HUS. Kidney cells have a high concentration of Stx receptors; hence, the kidney is a common site of damage. Some survivors may have permanent disabilities, such as renal insufficiency and neurological deficits. 
Antibiotic therapy for EHEC infection has had mixed results and, in some instances, seems to increase the patient’s risk of HUS. One speculation is that antibiotics lyse EHEC cells, releasing more Stx into the host.
  • Symptoms: Hemorrhagic colitis is characterized by severe cramping (abdominal pain), nausea or vomiting, and diarrhea that initially is watery, but becomes grossly bloody. In some cases, the diarrhea may be extreme, appearing to consist entirely of blood and occurring every 15 to 30 minutes. Fever typically is low-grade or absent.
  • Duration: In uncomplicated cases, duration of symptoms is 2 to 9 days, with an average of 8 days.
  • Route of entry: Oral (e.g., ingestion of contaminated food, water, or fecal particles).
  • Pathway: After ingestion, EHEC attaches to intestinal epithelial cells via LEE-encoded factors and produces Stx that are internalized, activated, and can pass into the bloodstream to become systemic.

3.         Frequency

It is estimated that there are about 63,000 cases of EHEC infections in the U.S. yearly. Ground beef and beef products continue to be implicated in most infections; however, contaminated produce increasingly has been implicated as a vehicle. As for STEC non-O157, the CDC estimates that 112,752 cases, per year, are attributed to foodborne illness in the U.S.

EHEC O157:H7 was first identified in an outbreak, in 1982, in which hamburgers from a fast- food restaurant were the vehicle. In 1991 (sic, 1992-1993), hamburgers from fast-food restaurants were implicated in another outbreak, which affected about 700 people in four states. In the mid 1990s, a large outbreak was traced to unpasteurized juices. The largest O157:H7 outbreak on record took place in Japan; radish sprouts were implicated and about 10,000 people were affected. Since then, O157:H7 has been implicated in numerous outbreaks that involved lettuce, salads, various types of sprouts, and, in 2006, bagged spinach. In 2009, an O157:H7 outbreak in the U.S. was traced to frozen, raw cookie dough.

About a dozen non-O157:H7 EHEC outbreaks have been recorded in the U.S., but incidences may be underestimated due to lack of routine testing and appropriate testing methods.

4.         Sources

Raw or undercooked ground beef and beef products are the vehicles most often implicated in O157:H7 outbreaks. Earlier outbreaks also implicated consumption of raw milk. O157:H7 can develop acid tolerance, as evidenced by infections in which acid foods (<pH4.6) were implicated, such as yogurt, mayonnaise, fermented sausages, cheeses, and unpasteurized fruit juices.

Various water sources, including potable, well, and recreational water, also have caused EHEC infections, as has contact with animals at farms or petting zoos.

Produce, including bagged lettuce, spinach, and alfalfa sprouts, increasingly is being implicated in O157:H7 infections.

Interestingly, infections in the U.S. by non-O157:H7 EHEC has been caused by many of these same vehicles, but, as of this writing, beef products have seldom been implicated.

Person-to-person transmission of infection is well documented.

Additional information is available from “Escherichia coli Serotype O157:H7: Novel Vehicles of Infection and Emergence of Phenotypic Variants,” by Dr. Peter Feng, FDA. Emerging Infectious Diseases (1995) 1(2)

5.         Diagnosis

Unlike generic E. coli, EHEC O157:H7 do not ferment the sugar sorbitol, so an effective method is to plate patient’s bloody diarrhea samples onto sorbitol MacConkey medium to screen for sorbitol non-fermenting isolates. These are then typed serologically using antibodies to the O157 and the H7 antigens. However, as other EHEC serotypes are increasingly causing illness, clinical samples are now simultaneously tested for the presence of Stx using commercially-available antibody kits. Any STEC strains found are then serotyped and identified. There are also many PCR assays specific for Stx genes that may be used for screening clinical samples.

6.         Target Populations

All people are believed to be susceptible to hemorrhagic colitis, but young children and the elderly are more susceptible and at higher risk for the illness to progress to more severe complications. Others with weak immune systems also are at risk, such as people with some chronic diseases or AIDS, and people on immunosuppressive medications; for example, some drugs used for arthritis and cancer chemotherapy.

7.         Food Analysis

Presence of EHEC O157:H7 in foods can be determined by plating culture enrichment of food samples onto selective and differential media. Unlike typical E. coli, O157:H7 do not ferment sorbitol and are negative with the MUG assay, so these tests are commonly used to distinguish O157:H7 strains from other E. coli prior to serological testing for the O157 and H7 antigens and also for the presence of Stx genes by PCR. Molecular assays also exist that can specifically detect O157:H7 strains using unique mutational markers.

Detection of non-O157:H7 EHEC, however, is more complex, due to the lack of unique traits. For non-O157 EHEC, food enrichment is first screened for Shiga toxin using an antibody assay or for Stx genes by PCR. Enrichment cultures that are positive for Stx are plated on agar media, and multiple isolates are then tested for Stx genes, in order to obtain a pure culture isolate. These putative STEC isolates are then retested for virulence genes and their serotype determined. This process is both time-consuming and labor-intensive and may require screening hundreds of isolates.

There are numerous commercially-available kits to test for Stx, O157, and a few other EHEC serotypes. However, there are several Stx subtypes and many EHEC serotypes, and not all of these can be detected by commercial test kits. The Escherichia coli link to the FDA Bacteriological Analytical Manual, Chapter 4, provides a description of methods to test for common E. coli. Methods for EHEC and O157:H7 are described in Chapter 4a.

8.         Examples of Outbreaks

For more information about recent outbreaks see the Centers for Disease Control and Prevention (CDC) Morbidity and Mortality Weekly Reports.

9.         Other Resources

More information is available from the following sources.

  • USDA (August 11 1998) – USDA Urges Consumers to Use Food Thermometer When Cooking Ground Beef Patties
  • CDC – General information about Escherichia coli O157:H7           
  • Produce Handling and Processing Practices, from Emerging Infectious Diseases, CDC
  • Risk assessment of E. coli O157:H7 in ground beef, from the USDA Food Safety and Inspection Service

Continue Reading Bad Bug Book – Foodborne Pathogenic Microorganisms and Natural Toxins – Second Edition – Enterohemorrhagic Escherichia coli (EHEC) – E. coli